un 2 00 8 Theory of non - equilibrium thermoelectric effects in nanoscale junctions
نویسنده
چکیده
Despite its intrinsic non-equilibrium origin, thermoelectricity in nanoscale systems is usually described within a static scattering approach which disregards the dynamical interaction with the thermal baths that maintain energy flow. Using the theory of open quantum systems we show instead that unexpected properties, such as a resonant structure and large sign sensitivity, emerge if the non-equilibrium nature of this problem is considered. Our approach also allows us to define and study a local temperature, which shows hot spots and oscillations along the system according to the coupling of the latter to the electrodes. This demonstrates that Fourier’s law – a paradigm of statistical mechanics – is violated at the nanoscale.
منابع مشابه
Thermoelectric Properties of Functionalized Graphene Grain Boundaries
Thermoelectric effect enables direct conversion between thermal and electrical energy and provides an alternative route for power generation and refrigeration. Hereby it is important to find materials with a high thermoelectric performance. In this sense, in the present work, we study the behavior of the thermoelectric properties of functionalized graphene grain boundaries by employing non-equi...
متن کاملThermoelectricity in atom-sized junctions at room temperatures
Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junct...
متن کاملThermoelectric effects in nanoscale junctions.
Despite its intrinsic nonequilibrium origin, thermoelectricity in nanoscale systems is usually described within a static scattering approach which disregards the dynamical interaction with the thermal baths that maintain energy flow. Using the theory of open quantum systems, we show instead that unexpected properties, such as a resonant structure and large sign sensitivity, emerge if the nonequ...
متن کاملHigh thermopower of mechanically stretched single-molecule junctions
Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations....
متن کاملImpact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study
A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...
متن کامل